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Abstract: In this research, Lagrangian relaxation algorithms are proposed for Hybrid Flow-Shop (HFS) scheduling 
problems. Conventional HFS consists of a series of production stages, each of which has several identical parallel 
machines and no buffer spaces are considered. Jobs are processed through all stages in the same direction. In the previous 
researches, they are assumed that the capacity of buffer is infinite. But in the actual manufacturing environment, the 
maximum capacity of buffer is limited. That’s why HFS with limited buffer is studied in this research. Unrelated parallel 
machine is the general and important model of parallel machine, because this is the model which can consider the 
difference of machining performance with large flexibility. But most studies of HFS deal with identical parallel machines 
which do not consider the machine abilities. These are the motivation to study HFS scheduling problem with unrelated 
parallel machine in this study. In this research, the objective function is to minimize the total weighted tardiness and the 
earliness for each job. Three methods of Lagrangian relaxation algorithms are proposed to solve the HFS scheduling 
problem with limit buffers. In most studies about Lagrangian relaxation algorithm, the machine capacity constraints are 
relaxed and each stage is scheduled separately. But in this study, not only the machine capacity but also the precedence 
constraints are relaxed to schedule all stages together. The results of numerical experiments showed that the proposed 
methods perform very well especially for large scale problems. 
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1. INTRODUCTION 
 

We focus on a scheduling problem in a hybrid flow shop (HFS), also called flexible flow shop with multiple 
processors. In a typical HFS, there are several serial stages and there are one or more parallel machines at each stage. HFS 
scheduling problems are quite common in practice, especially in the process industry where multiple machines are 
available at each stage as well as in certain flexible manufacturing environments (Gupta et al. 1997). 

The HFS considered here consists of a series of production stages and each stage composed of several unrelated 
parallel machine (UPM). Figure 1 illustrates a schematic view of HFS model. UPM can be characterized as machines that 
perform the same function but have different capabilities or capacities. A company may invest in similar machines that 
have different capabilities, taking into consideration the capital cost, operation cost and variability in demand. A fair 
amount of the research that has been performed on UPM scheduling has focused on a variety of objectives, ranging from 
minimizing the maximum completion time (Lamica 2000, Srivastava 1998), due date related objective (Bank et al.2001, 
Kim et al.2002, Kim et al.2003). 

As surveyed in Linn and Zhang (1999), there are many studies on HFS scheduling problems. However, most of them 
deal with the objective function to minimize makespan or mean flow time (Dessouky et al.1998, Portman et al.1998, 
Kyparisis et al.2006, Jin et al.2006, Tang et al.2006). Despite the importance of due dates in today’s market environment, 
there are very limited number of papers on the HFS scheduling problem with the performance measures related to due 
dates (Tang et al.2002, Gupta et al.1998), to the best of our knowledge. Generally, each job has a given due date. If it 
finishes too late, it cannot be delivered on time. If it finishes too early, it has to be stored as inventory. The objective of 
scheduling is to meet the products’ due dates just in time (Zhang et al. 2000).  

A new solution methodology is developed for the above-mentioned problem based on the Lagrangian 
Decomposition and Coordination method (LDC). LDC has recently emerged as a promising method for solving 
large-scale integer programming problems including complex scheduling problems. It introduces the constraints into the 
objective function by using a vector of Lagrangian multipliers to form a relaxed problem of the primal problem. For a 
given value of the vector of Lagrangian multipliers, the relaxed problem is usually much easier to solve than the original 
problem. The optimal values of the Lagrangian multipliers are searched through solving the Lagrangian dual problem by 
using a subgradient algorithm. The technique has successfully been used to obtain near-optimal solutions for parallel 



machine scheduling problems (Luh et al. 1993), flowshop scheduling (Tang et al.2002) and job shop scheduling (Hoitmt 
et al. 1993, Luh et al. 1998).  

The originality of this research is to consider the new problem, which is a HFS scheduling problem with limited 
buffers in which each stage contains UPM. The objective is to find a schedule, which minimizes the sum of weighted 
earliness and tardiness penalty of the due date for each job. A new solution methodology is developed for the 
above-mentioned problem based on the LDC. We decompose our HFS with UPM scheduling problems into smaller 
sub-problems at each stage, and we solve the subproblems by the LDC.  

The rest of the paper is organized as follows. Section 2 first outlines the requirements on the scheduling model. An 
integer programming formulation of the HFS scheduling problem with limited buffer is then presented. Section 3 
describes the solution methodology based on the LDC algorithm. The proposed algorithms and other algorithms are tested 
on randomly generated problems, and the results are given in section 4. Finally, section 5 concludes with a short summary. 
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Figure 1: A schematic view of HFS model 

 
 

2. MATHEMATICAL FORMULATION 
 
2.1 Problem description 
 
The problem considered in this paper is described as follows. There are N jobs to be processed through S stages in series. 
Each stage j (j=1,2,…,S) has unrelated parallel machines. Each job i (i=1,2,…,N) requires a processing time pij at stage j and 
has a due date Di, tardiness penalty Wi, earliness penalty Ui, all of which are assumed to be positive. Job processing is 
assumed to be non-preemptive so that a contiguous block of time of length pij is needed to process job i at stage j. All jobs are 
considered available for processing at time zero and the scheduling time horizon L is assumed to be long enough to complete 
all the jobs. Each machine can handle at most one job at a time while a job can be processed on at most one machine at any 
time. The maximum capacity of buffer between stage j and stage j+1 is limited to Vj. The objective is to find a schedule that 
minimizes the sum of weighted earliness and tardiness penalty of the due date for each job.  
 
 
2.2 The model 
 
Parameters: 
S : the number of stages 
N : the number of jobs 
Di : the due date of job i 
L : the planning horizon 
Wi : the tardiness penalty of job i  
Ui : the earliness penalty of job i 
Pijk : the processing time of job i at stage j on machine type k  
Mjk : the number of machine type k at stage j  
Tj : the number of machine types at stage j 
Vj : the maximum capacity of buffer between stage j and stage j+1 
 
Decision variables: 
ti : the tardiness of job i 
ei : the earliness of job i  
cij : the completion time of job i at stage j 
bij : the beginning time of job i at stage j 
pij : the processing time of job i at stage j  



1 if job  is processed on machine type  in term  at stage  
0 otherwise

1 if job  is processed on machine type  at stage  
0 otherwise

1 if job  stays between stage  and stage 
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With the above notation the HFS scheduling problem under consideration can be formulated as follows. 
Note that isc in the model is the final completion time of job i. 
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Equation (1) is used to minimize the total weighted tardiness and the total weighed earliness for each job. Constraints (2) 
~ (5) define ti and ei. Constraints (6) are the machine capacity constraints. Constraints (7) define the completion time of 
each job. Constraints (8), (9) define the processing time for each job. Constraints (10) define that jobs are processed on 
one machine type in a stage. (11), (12) define relationship between δijkl and zijk. Constraints (13) guarantee that all jobs 
are completed in the planning horizon. Constraints (14) are the precedence constraints. (15), (16) are the constraints of 
capacity of the buffer. 
 
 

3. SOLUTION METHODOLOGY 
 
LDC introduces the constraints into an objective function by using a vector of the Lagrangian multipliers to form a relaxed 
problem for the original problem. The optimal values of the Lagrangian multipliers are searched through solving the 
Lagrangian dual problem by using a subgradient algorithm. The following three methods (A, B and C) to relax the 
constraints are proposed in this paper.  
 For a given set of multipliers, all the sub-problems of the relaxed problem are solved. Because the resulting solution 
may be infeasible for the original problem, a heuristic is applied to covert the infeasible schedule into a feasible schedule. 
The set of multipliers is then adjusted based on the degree of constraints violation of the relaxed solution. With the new set 
of multipliers, a new relaxed problem is then formulated and solved. This process continues until the end criterion is 
reached. The solution quality is measured by the relative duality gap( ( ) /n n n

UB LB LBZ Z Z= − ). 

The dual objective value provides a lower bound ZLB on the optimal value for the original problem while the 
objective value ZUB of the feasible schedule is an upper bound for the problem. The details for the solution of the 
sub-problems, the construction of feasible schedules, and updating the Lagrangian multipliers are presented as follows. 
 
 
3.1 Lagrangian relaxation 
In the each proposed relaxation method, the objective function can be formed as RA, RB and RC by using a vector of the 
Lagrangian multipliers  and ij jklλ π , which is non-negative value. For given values of and ij jklλ π , the relaxed problem can be 
decomposed into smaller sub-problems, each for one job. The sub-problems for each job i is given as Li

A, Li
B and Li

C. 
 
Method A: Relaxation of precedence constraints (14) 

 
This leads to the following decomposed sub-problem for each job i (given 

ijλ ) 

 
From the (Li

A) in equation (18), the scheduling of job i becomes the selection of the optimal beginning time bij*. To do this, 
(Li

A) is computed for each possible value of bij, and bij* is the one yielding the lowest value of these (Li
A). The 

computational complexity of the problem (Li
A) is linear in L (planning horizon) since at most L times evaluations of (Li

A) 
is needed to determine bij*. This optimization problem is solved from stage S and the biS* is assumed to be the due date for 
stage S-1. Next, the optimization problem at stage S-1 is solved and the biS-1* is assumed to be the due date for stage S-2. 
These processes are repeated until we solve the first stage and determine the bij*(j=1,2,…,S). 
 In the each stage, unrelated parallel machine (UPM) scheduling problem is solved by the LDC based algorithm 
proposed by (Watanabe et al.2006). In the UPM scheduling problem, a processing time of a job is different from the 
machine type which the job processed. In proposed method, this UPM scheduling problem is decomposed into two 
problems. One is the assignment problem which is to assign jobs to machine types, the other is scheduling problem on the 
machine to which jobs are assigned. That enables to solve this problem as identical parallel machine (IPM) scheduling 
problem.  

The characteristic of proposed method based on LDC is to solve the assignment problem efficiently by using the 
Lagrangian multiplier obtained the LDC. The value of the Lagrangian multiplier obtained when the LDC is applied to 
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IPM scheduling problem has the feature that the value is small in the term when production demand is small and vice 
versa. We solve the assignment problem by using this feature to equalize the each machine type’s operational rate.  

These processes are also applied for the following relaxation method B and C. 
 

Method B: Relaxation of machine capacity constraints (6) 

 
Method C: Relaxation of machine capacity constraints (6) and precedence constraints (14) 

 
 
3.2 Constructing a feasible solution 
 
Because of the stopping criterion used, the solution in the dual space is generally associated with an infeasible schedule, 
because the capacity and/or precedence constraint might be violated for a few time units. To construct a feasible schedule, 
a heuristic approach based on the “list scheduling” concept is developed as follows.  

In the optimal dual solution, each job is uniquely associated with a beginning time bij*. A list is created by arranging 
jobs in the descending order of their respective completion times, and jobs are scheduled on machines according to this 
list as machines become available from the due date of each job. This backward scheduling mechanism is applied to 
satisfy the just-in-time requirement of the completion of jobs. After that, a forward scheduling mechanism is also applied 
after the backward scheduling, when the schedule violates the release time constraint. Besides that, if the completion 
times of more than two jobs are the same, we consider the amount of slack to the due date, job weight and expected 
processing time and decide the priority in that list. Once a feasible schedule is obtained, the corresponding value of the 
objective function is an upper bound on the optimal objective function value. 
 
 
3.3 Updating Lagrangian multipliers 
In order to solve the dual problem, the subgradient method (Luh et al.1993) is adopted for updating the Lagrangian 
multipliers. In this way, the vectors of Lagrangian multipliers and n n

jkl ijπ λ  are updated by (23) and (24).  

 
where  and n nα β are the step size at the n the iteration and given by (25) and (26). 
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where n
BZU  is an upper bound value of the optimal value R obtained from the best feasible solution found so far and n

LBZ is 
an lower bound value of R at the nth iteration. 
 
( ) ( ) and n n

jkl ijg hπ λ  are the subgradient of the Lagrangian multipliers and n n
jkl ijπ λ  and calculated in (27) and (28). 

 
 

4. COMPUTATIONL EXPERIMENTS 
 
To test the performance of the method and to study the characteristics of the solutions, a computational experiment has 
been carried out on randomly generated problem instances. In this experiment, proposed three relaxation methods are 
compared. 
 
 
4.1 Generation of problem instance 
 
For each data set, ten instances are randomly generated, therefore resulting in a total of 230 test problems used in this 
experiment. Here, [x, y] indicates the uniform distributions with range [x, y]. Table 1 shows the input data summary. 
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Table1. Parameters for each data set 

Data
set

Jobs Stages D_range Pmax Wmax Umax Vmax Tmax Mmax

1 3

2 4

3 5

4 6

5 7

6 8

7 3

8 4

9 5

10 6

11 7

12 2

13 4

14 6

15 8

16 2

17 4

18 6

19 8

20 2

21 4

22 6

23 8

2 2 3

5.0 5.0

4

6 5

6 6

3

30

50

100

0.8-1.2 3.0

2

5.00.8-1.6

3 4 3

6 6

8 8

8 8

 
 
 
4.2 Computational results 
 
The performance of each proposed algorithm was examined for small scale and large scale problems. All the objective 
function values and CPU time shown in the Table 2 and 3 represent the average performance measures for the ten instances 
of the corresponding data set.  
 
 
4.2.1 Experiment 1 
In the small size problem shown in Table 2, all three proposed relaxation algorithm (Precedence, Capacity and Both 
constraints relaxation) could find optimal solutions for all the data set (1 through 11). The optimal solutions were confirmed 
by solving the integer programming formulation of HFS scheduling problem by using mathematical programming software 
(GLPK). The computation time of proposed algorithm is less than 1 second but the time of GLPK increase exponentially 
with the increase of number of jobs. 



 
Table 2. Experimental results for small size problem 

Precedence Capacity Both GLPK Precedence Capacity Both GLPK

1 3 7.1 7.1 7.1 7.1 0.1 0.1 0.1 20.7

2 4 16.0 16.0 16.0 16.0 0.1 0.1 0.1 72.4

3 5 47.9 47.9 47.9 47.9 0.1 0.1 0.1 112.3

4 6 22.8 22.8 22.8 22.8 0.1 0.1 0.1 402.6

5 7 52.9 52.9 52.9 52.9 0.1 0.1 0.1 1111.3

6 8 59.6 59.6 59.6 59.6 0.1 0.1 0.1 2621.8

7 3 11.2 11.2 11.2 11.2 0.1 0.1 0.1 38.2

8 4 14.0 14.0 14.0 14.0 0.1 0.1 0.1 114.7

9 5 28.9 28.9 28.9 28.9 0.1 0.1 0.1 249.7

10 6 29.7 29.7 29.7 29.7 0.1 0.1 0.1 855.6

11 7 56.1 56.1 56.1 56.1 0.1 0.1 0.1 2337.1

Average CPU time

2

3

Data
set

Jobs Stages
Average Objective Function Value

 
 
 
4.2.2 Experiment 2 
In the large size problems shown in Table3, it is impossible to use the GLPK to find optimal solution because of too much 
time consuming. Then we compare the performance among those proposed algorithms. The second method, relaxation of 
capacity constraints, was the best among them when the number of stage is small, such as data set 12, 13, 16 and 20. The 
reason would be that it is more important to consider the relationship between machines in each stage than the relationship 
between stages. However, if the number of stage becomes larger, such as data set 14,15, 18,19,22 and 23, the third method, 
relaxation of both capacity and precedence constraints, performs very well. Because it would be more important to consider 
not only the relationship between machines in each stage, but also the relationship between stages to optimize all stages 
together in the large number of stages problems. The computation time of those methods are also different as shown in Table 
3. However, even the longest time is about 700 seconds for 100 jobs. Such a calculation time is acceptable for real world use. 
 



 
Table 3. Experimental results for large size problem 

Precedence Capacity Both Precedence Capacity Both

12 2 798.9 492.6 506.2 3.8 4.8 5.5

13 4 838.8 419.4 420.4 10.7 10.5 16.1

14 6 552.6 270.8 266.5 25.4 20.3 37.8

15 8 365.2 239.3 232.5 50.6 43.6 58.3

16 2 3367.5 1829.3 1881.9 15.0 19.7 26.6

17 4 2487.0 1239.8 1130.1 49.5 50.0 76.5

18 6 2423.6 1131.2 1066.5 68.3 62.5 105.2

19 8 2289.6 1156.6 1103.3 122.3 103.3 199.8

20 2 3026.0 2056.3 2080.5 39.0 36.5 45.3

21 4 2685.4 1482.1 1479.0 173.6 175.8 300.5

22 6 2033.1 1133.3 1049.6 258.3 209.6 457.5

23 8 1565.8 953.2 842.3 586.2 493.6 700.6

50

100

Average Objective Function Value Average CPU timeData
set

30

Jobs Stages

 
 
 

5. CONCLUSION 
 
In this paper, hybrid flow shop scheduling problem with limited buffer was studied to minimize the total weighted 

tardiness and earliness for all jobs. The problem was formulated as an integer programming model and three Lagrangian 
relaxation methods were proposed. Results of numerical experiment for small size problem showed that all of three 
proposed methods could find optimal solutions in just a second. Large size problem experiment showed that the 
performances of those methods depend on the problem characteristics, such as number of jobs and stages. If the number of 
stage is relatively small, the relaxation of capacity constraints performs well. However if the number of stage increase, the 
relaxation of both capacity and precedence constraints is the best among them. For further research, setup time between 
jobs should be considered in the HFS scheduling model. 
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